小鸟游六花

vanishment this world

一、埃拉托斯特尼筛法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
const int MAX_N = 1010;
using ll = long long;
bool is_prime[MAX_N];
vector<int> primes;
int init = []() {
for (int i = 0; i < MAX_N; ++i) {
is_prime[i] = true;
}
is_prime[0] = is_prime[1] = false;
for (int i = 2; i < MAX_N; ++i) {
if (!is_prime[i]) {
continue;
}
primes.push_back(i);
for (int j = i; j <= (MAX_N - 1) / i; ++j) {
is_prime[i * j] = false;
}
}
return 0;
} ();
bool check_prime(ll x) {
if (x < MAX_N) {
return is_prime[x];
}
for (ll p : primes) {
if (p * p > x) {
return true;
}
if (x % p == 0) {
return false;
}
}
return true;
}

一、算法实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
template<typename T, int M>
struct matrix_t {
using row = vector<T>;
using mat = vector<row>;
using ll = long long;
static void mul(const mat& a, const mat& b, mat& c) {
auto m = a.size(), p = a[0].size(), n = b[0].size();
for (int i = 0; i < m; ++i) {
for (int k = 0; k < p; ++k) {
for (int j = 0; j < n; ++j) {
c[i][j] = (c[i][j] + (ll)a[i][k] * b[k][j]) % M;
}
}
}
}
static mat mul(const mat& a, const mat& b) {
auto m = a.size(), n = b[0].size();
mat c = vector<row>(m, row(n, 0));
mul(a, b, c);
return c;
}
static mat qpow(mat a, ll k) {
auto n = a.size();
mat ans = vector<row>(n, row(n, 0));
for (int i = 0; i < n; ++i) {
ans[i][i] = 1;
}
while (k) {
if (k & 1) {
ans = mul(a, ans);
}
k >>= 1;
a = mul(a, a);
}
return ans;
}
};
const int M = 1e9 + 7;
using matrix = matrix_t<int, M>;
class Solution {
public:
int fib(int n) {
vector<vector<int>> mat = {{0, 1}, {1, 1}};
vector<vector<int>> vec = {{0, 1}};
mat = matrix::qpow(mat, n);
return matrix::mul(vec, mat)[0][0];
}
};

一、算法实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
using ll = long long;
template<typename T, typename F>
struct disjoint_sparse_table {
int n;
vector<int> log2;
vector<vector<T>> mat;
F func;
disjoint_sparse_table(const vector<T>& arr, const F& f) : n(int(arr.size())), func(f) {
build_log2();
mat.push_back(arr);
int k = log2[n];
for (int i = 1; i <= k; ++i) {
mat.emplace_back(n);
for (int j = 0; j < n - (1 << (i - 1)); ++j) {
mat[i][j] = func(mat[i - 1][j], mat[i - 1][j + (1 << (i - 1))]);
}
}
}
void build_log2() {
log2.resize(n + 5, 0);
log2[1] = 0;
log2[2] = 1;
for (int i = 3; i <= n; ++i) log2[i] = log2[i >> 1] + 1;
}
T query(int l, int r) {
int k = log2[r - l + 1];
return func(mat[k][l], mat[k][r - (1 << k) + 1]);
}
};
/*
disjoint_sparse_table st(nums, [](int a, int b) {
return gcd(a, b);
});
*/
0%